Evolution of the global data assimilation at Météo-France

Cécile Loo, Loïk Berre, Gérald Desroziers, Benjamin Ménétrier
Florianopolis, 11 September 2017
Numerical Weather Prediction at Météo-France

ARPEGE
7.5 km - 37 km

AROME
1.3 km
Operational global assimilation

Deterministic 4D-Var

25 perturbed 4D-Var
Operational global assimilation

- **Deterministic 4D-Var**
 - 6 hour time window
 - 2 outer loops: T1198c2.2 resolution, L105 vertical levels
 - 1st inner loop TL149c1.0 (135 km), very simplified physics
 - 2nd inner loop TL399c1.0 (50 km), simplified physics
 - Jc-DFI, VarBC
 - $B^{1/2} = K^b \sum^b C^{1/2}$, K^b = spectral + non-linear balances, wavelet C

- **Ensemble assimilation**
 - 25 perturbed 4D-Var
 - 1 outer loop TL479c1.0 (40 km) / inner loop TL149c1.0 (135 km)
 - Observation errors simulated from random draws of R
 - Model errors: multiplicative inflation of 6h background errors

- **Provides**
 - filtered Σ^b from last 25 perturbations, updated every 6 h
 - wavelet C from last 6 x 25 perturbations (last 30 h), updated every 6 h
Global assimilation $B^{1/2} = K^b \Sigma^b (C^w)^{1/2}$

vorticity σ^b

850 hPa

diagnosed
u length-scale
850 hPa
Normalisation of a wavelet-based correlation matrix $C = W^{-1} D W^{-T}$

- **Diagnosis of diagonal values σ^2 of C**

- **Explicit formula** (accurate, at low cost):
 \[\sigma^2 = \frac{1}{W} d \]

 i.e. apply a modified inverse wavelet transform $\frac{1}{W}$
 (using squared values of wavelet filters in W)
 to variance fields d of wavelet coefficients.

- **Randomization approach** (with $N=10,000$ vectors, less accurate and more costly):
 \[\sigma^2 = \text{var} \left(W^{-1} D^{1/2} \eta \right) \]

 (Chabot, Berre and Desroziers 2017)
Number of observations

Evolution of cumulated monthly number of observations used for each type

- IASI
- AIRCRAFT
Degrees of Freedom for Signal (DFS)

Part of DFS for each type of observations
Cumulated DFS from 2017011900 to 2017011918 : 528551
Operational global assimilation
Next configuration

- **Deterministic 4D-Var**
 2 outer loops T1198c2.2 → T1798c2.2 (7.5 → 5 km)
 1st inner loop : 135 → 90 km
 2nd inner loop : 50 → 40 km

- **Ensemble assimilation**
 25 → 50 perturbed 4D-Var.
 1 outer loop, 40 km
 Inner loop : 135 → 90 km

- **Gives**
 - finer filtered Σ^b from last 25 → 50 perturbations (less sampling noise), updated every 6 h,
 - more localised wavelet \mathbf{C} from last 6 x 25 → 3 x 50 pert. (last 30 h → 12h), updated every 6 h.
Increase of increment resolution

diagnosed
u length-scale
850 hPa
50 km (T399)

diagnosed
u length-scale
850 hPa
40 km (T499)
Decrease of time-averaging for correlations
(30 h with 25 members / 12 h with 50 members)

diagnosed u length-scale
850 hPa
40 km (T499)
25 members

diagnosed u length-scale
850 hPa
40 km (T499)
50 members

Small length scales more pronounced and localised
Deterministic 4D-Var additional microphysics package

- **Characteristics**
 - only Qv prognostic
 - added to current moist simplified physics
 - based on Smith cloud scheme
 - autoconversion / collection / melting / evaporation

- **Impact**
 - needs many tunings
 - improvement in the representation of moist processes in the TL an AD
 - improvement of the TL approximation
 - evaluated in the new version of the global assimilation
Conclusion

- Global data assimilation at Météo-France
 - Deterministic incremental 4D-Var.
 - Ensemble assimilation with 25 perturbed 4D-Var.
 - Flow-dependent background error variances and correlations.
 - Continuous increase of the number of observations.

- Significant update planned for the next future
 - 5 km resolution over France and improved resolution of analysis increment.
 - 50 perturbed 4D-Var.
 - Better representation of background error covariances B.
 - Simplified microphysics package.

- Towards 4DEnVar
 - No more TL and AD models.
 - Still improved representation of B.
 - Potentially more scalable.